127 research outputs found

    Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many viruses recognize specific sugar residues, particularly sulfated or sialylated glycans, as the infection receptors. A change of sialic acid (2-6)-linked galactose (SA-α2,6Gal) to SA-α2,3Gal determines the receptor for avian flu infection. The receptor for enterovirus 71 (EV71) infection that frequently causes fatal encephalitis in Asian children remains unclear. Currently, there is no effective vaccine or anti-virus agent for EV71 infection. Using DLD-1 intestinal cells, this study investigated whether SA-linked glycan on DLD-1 intestinal cells was a receptor for EV71, and whether natural SA-linked sugars from human milk could block EV71 infection.</p> <p>Results</p> <p>EV71 specifically infected DLD-1 intestinal cells but not K562 myeloid cells. Depletion of O-linked glycans or glycolipids, but not N-linked glycans, significantly decreased EV71 infection of DLD-1 cells. Pretreatment of DLD-1 cells with sialidase (10 mU, 2 hours) significantly reduced 20-fold EV71 replication (p < 0.01). Taken together, these results suggest that SA-linked O-glycans and glycolipids, but not N-glycans, on DLD-1 cells were responsible for EV71 infection. Purified SA-α2,3Gal and SA-α2,6Gal from human milk significantly inhibited EV71 infection of DLD-1 cells, indicating terminal SA-linked glycans could be receptors and inhibitors of EV71 infection.</p> <p>Conclusion</p> <p>This is the first in the literature to demonstrate that EV71 uses SA-linked glycans as receptors for infection, and natural SA-linked glycans from human milk can protect intestinal cells from EV71 infection. Further studies will test how a SA-containing glycan can prevent EV71 in the future.</p

    Paternal Tobacco Smoke Correlated to Offspring Asthma and Prenatal Epigenetic Programming

    Get PDF
    Rationale: Little is known about effects of paternal tobacco smoke (PTS) on the offspring’s asthma and its prenatal epigenetic programming.Objective: To investigate whether PTS exposure was associated with the offspring’s asthma and correlated to epigenetic CG methylation of potential tobacco-related immune genes: LMO2, GSTM1 or/and IL-10 genes.Measurements and Main Results: In a birth cohort of 1,629 newborns, we measured exposure rates of PTS (23%) and maternal tobacco smoke (MTS, 0.2%), cord blood DNA methylation, infant respiratory tract infection, childhood DNA methylation, and childhood allergic diseases. Infants with prenatal PTS exposure had a significantly higher risk of asthma by the age of 6 than those without (p = 0.026). The PTS exposure doses at 0, &lt;20, and ≧20 cigarettes per day were significantly associated with the trend of childhood asthma and the increase of LMO2-E148 (p = 0.006), and IL10_P325 (p = 0.008) CG methylation. The combination of higher CG methylation levels of LMO2_E148, IL10_P325, and GSTM1_P266 corresponded to the highest risk of asthma by 43.48%, compared to other combinations (16.67–23.08%) in the 3-way multi-factor dimensionality reduction (MDR) analysis. The LMO2_P794 and GSTM1_P266 CG methylation levels at age 0 were significantly correlated to those at age of 6.Conclusions: Prenatal PTS exposure increases CG methylation contents of immune genes, such as LMO2 and IL-10, which significantly retained from newborn stage to 6 years of age and correlated to development of childhood asthma. Modulation of the LMO2 and IL-10 CG methylation and/or their gene expression may provide a regimen for early prevention of PTS-associated childhood asthma.Descriptor number: 1.10 Asthma Mediators.Scientific Knowledge on the Subject: It has been better known that maternal tobacco smoke (MTS) has an impact on the offspring’s asthma via epigenetic modification. Little is known about effects of paternal tobacco smoke (PTS) on the offspring’s asthma and its prenatal epigenetic programming.What This Study Adds to the Field: Prenatal tobacco smoke (PTS) can program epigenetic modifications in certain genes, such as LMO2 and IL-10, and that these modifications are correlated to childhood asthma development. The higher the PTS exposure dose the higher the CG methylation levels are found. The combination of higher CG methylation levels of LMO2_E148, IL10_P325 and GSTM1_P266 corresponded to the highest risk of asthma. Measuring the DNA methylation levels of certain genes might help to predict high-risk populations for childhood asthma and provide a potential target to prevent the development of childhood asthma

    Acute myocarditis in dengue hemorrhagic fever: a case report and review of cardiac complications in dengue-affected patients

    Get PDF
    SummaryWe report a case of dengue hemorrhagic fever (DHF) complicated by acute myocarditis and review the literature. A 65-year-old woman experienced DHF due to dengue virus serotype 3, complicated with acute myocarditis and acute pulmonary edema. Clinically this masqueraded as acute myocardial infarction, with an electrocardiographically depressed ST segment in precordial leads and elevated serum cardiac-specific troponin I level. Under supportive management, the patient recovered 3 days later. A total of 18 pertinent articles involving 339 dengue-affected patients with cardiac complications were found by PubMed search. Clinical manifestations of cardiac complications varied considerably, from self-limiting tachy–brady arrhythmia to severe myocardial damage, leading to hypotension and pulmonary edema. Although rare, a fatal outcome was reported in some cases of dengue with cardiac complications. To avoid otherwise preventable morbidity and mortality, physicians should have a high index of suspicion for cardiac complications in patients with dengue illness and should manage this accordingly

    Case report: Presentations and cytokine profiles of inflammatory non-pulmonary COVID-19 and related diseases in children

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic has evolved to dynamic waves of different SARS-CoV-2 variants. Initially, children diagnosed with COVID-19 presented pulmonary involvement characterized by mild diseases. In the later waves of the COVID-19 pandemic, life-threatening non-pulmonary inflammatory diseases such as (1) aseptic meningoencephalitis (ME), (2) acute necrotizing encephalopathies (ANE), and (3) multisystem inflammatory syndrome in children (MIS-C) have been reported, affecting the pediatric population. To alert timely identification and prevention of the life-threatening non-pulmonary COVID-19, we present the cases of ME, ANE, and MIS-C in terms of clinical manifestation, cytokine profile, and follow-up consequences. Based on the immunopathogenesis and risk factors associated with non-pulmonary COVID-19, we delineate strategies for an early diagnosis and treatment to reduce morbidity and mortality in children

    DC-SIGN (CD209) Promoter −336 A/G Polymorphism Is Associated with Dengue Hemorrhagic Fever and Correlated to DC-SIGN Expression and Immune Augmentation

    Get PDF
    Dengue fever (DF) is an arthropod-borne disease that is prevalent in tropical and subtropical regions of the world. DC-SIGN [dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing non-integrin] is a major receptor for dengue infection. DC-SIGN, also called CD209, expresses on dendritic cells (DCs) that bind to ICAM-3, which is expressed on T cells to facilitate the initial interaction between DCs and T cells. Variations in the CD209 promoter (−336 A/G; rs4804803) genotype are involved in the pathogenesis of human infectious diseases. Here we found that patients with dengue hemorrhagic fever (DHF) had a higher frequency of the AG or GG genotype of rs4804803 than DF or controls. Functional studies determined that monocyte-derived DCs (MDDCs) from individuals with AG genotype had significantly higher cell surface DC-SIGN expression, associated with higher TNFα, IL-12p40, and IP-10 production, but lower viral replication than those with AA genotype. An increase in DEN-2 replication in MDDCs was observed following the addition of anti-IP-10 neutralizing antibody. These findings highlight the fact that the rs4804803 SNP in the CD209 promoter is associated with DHF and correlated to DC-SIGN expression and immune augmentation

    Lack of Association between CLEC5A Gene Single-Nucleotide Polymorphisms and Kawasaki Disease in Taiwanese Children

    Get PDF
    Background. Kawasaki disease is characterized by systemic vasculitis of unknown etiology. Previous genetic studies have identified certain candidate genes associated with susceptibility to KD and coronary artery lesions. Host innate immune response factors are involved in modulating the disease outcome. The aim of this study was to investigate CLEC5A (C-type lectin domain family 5) genetic polymorphisms with regards to the susceptibility and outcome of KD. Methods. A total of 1045 subjects (381 KD patients and 664 controls) were enrolled to identify 4 tagging single-nucleotide polymorphisms (tSNPs) of CLEC5A (rs1285968, rs11770855, rs1285935, rs1285933) by using the TaqMan Allelic Discrimination Assay. The Hardy-Weinberg equilibrium was assessed in cases and controls, and genetic effects were evaluated by the chi-square test. Results. No significant associations were noted between the genotypes and allele frequency of the 4 CLEC5A tSNPs between controls and patients. In the patients, polymorphisms of CLEC5A showed no significant association with coronary artery lesion formation and intravenous immunoglobulin treatment response. Conclusions. This study showed for the first time that polymorphisms of CLEC5A are not associated with susceptibility to KD, coronary artery lesion formation, and intravenous immunoglobulin treatment response in a Taiwanese population

    DC-SIGN (CD209) Promoter −336 A/G (rs4804803) Polymorphism Associated with Susceptibility of Kawasaki Disease

    Get PDF
    Kawasaki disease (KD) is characterized by systemic vasculitis of unknown etiology. High-dose intravenous immunoglobulin (IVIG) is the most effective therapy for KD to reduce the prevalence of coronary artery lesion (CAL) formation. Recently, the α2, 6 sialylated IgG was reported to interact with a lectin receptor, specific intracellular adhesion molecule-3 grabbing nonintegrin homolog-related 1 (SIGN-R1) in mice and dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) in human, and to trigger an anti-inflammatory cascade. This study was conducted to investigate whether the polymorphism of DC-SIGN (CD209) promoter −336 A/G (rs4804803) is responsible for susceptibility and CAL formation in KD patients using Custom TaqMan SNP Genotyping Assays. A total of 521 subjects (278 KD patients and 243 controls) were investigated to identify an SNP of rs4804803, and they were studied and showed a significant association between the genotypes and allele frequency of rs4804803 in control subjects and KD patients (P = 0.004 under the dominant model). However, the promoter variant of DC-SIGN gene was not associated with the occurrence of IVIG resistance, CAL formation in KD. The G allele of DC-SIGN promoter −336 (rs4804803) is a risk allele in the development of KD

    Proteomic profiling reveals α1-antitrypsin, α1-microglobulin, and clusterin as preeclampsia-related serum proteins in pregnant women

    Get PDF
    AbstractObjectivePreeclampsia is a major cause of mortality in pregnant women but the underlying mechanism remains unclear to date. In this study, we attempted to identify candidate proteins that might be associated with preeclampsia in pregnant women by means of proteomics tools.Materials and methodsDifferentially expressed proteins in serum samples obtained from pregnant women with severe preeclampsia (n = 8) and control participants (n = 8) were identified using two-dimensional gel electrophoresis (2-DE) followed by peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Additional serum samples from 50 normal and 41 pregnant women with severe preeclampsia were analyzed by immunoassay for validation.ResultsTen protein spots were found to be upregulated significantly in women with severe preeclampsia. These protein spots had the peptide mass fingerprints matched to α1-antitrypsin, α1-microglobulin, clusterin, and haptoglobin. Immunoassays in an independent series of serum samples showed that serum α1-antitrypsin, α1-microglobulin, and clusterin levels of severe preeclampsia patients (n = 41) were significantly higher than those in the normal participants (n = 50; α1-antitrypsin 295.95 ± 50.94 mg/dL vs. 259.31 ± 33.90 mg/dL, p = 0.02; α1-microglobulin 0.029 ± 0.004 mg/mL vs. 0.020 ± 0.004 mg/mL, p < 0.0001; clusterin 77.6 ± 16.15 μg/dL vs. 67.6 ± 15.87 μg/dL, p < 0.05).ConclusionIdentification of these proteins by proteomics analysis enables further understanding of the pathophysiology of preeclampsia. Further studies are warranted to investigate the role of these biomarkers in prediction of this disease

    CD40 Gene Polymorphisms Associated with Susceptibility and Coronary Artery Lesions of Kawasaki Disease in the Taiwanese Population

    Get PDF
    Background. Kawasaki disease (KD) is characterized by systemic vasculitis of unknown etiology. Our previous studies showed expression of CD40 ligand on CD4+ T cells correlated to the coronary artery lesion (CAL) and disease progress in KD. Other studies from Japan suggested the role of CD40L in the pathogenesis of CAL, and this might help explain the excessive number of males affected with KD but cannot be reproduced by Taiwanese population. This study was conducted to investigate the CD40 polymorphism in KD and CAL formation. Methods. A total of 950 subjects (381 KD patients and 569 controls) were investigated to identify 2 tagging single-nucleotide polymorphisms (tSNPs) of CD40 (rs4810485 and rs1535045) by using the TaqMan allelic discrimination assay. Results. A significant association was noted with regards to CD40 tSNPs (rs1535045) between controls and KD patients (P = 0.0405, dominant model). In KD patients, polymorphisms of CD40 (rs4810485) showed significant association with CAL formation (P = 0.0436, recessive model). Haplotype analysis did not yield more significant results between polymorphisms of CD40 and susceptibility/disease activity of KD. Conclusions. This study showed for the first time that polymorphisms of CD40 are associated with susceptibility to KD and CAL formation, in the Taiwanese population

    DC-SIGN (CD209) Promoter −336 A/G (rs4804803) Polymorphism Associated with Susceptibility of Kawasaki Disease

    Get PDF
    Kawasaki disease (KD) is characterized by systemic vasculitis of unknown etiology. High-dose intravenous immunoglobulin (IVIG) is the most effective therapy for KD to reduce the prevalence of coronary artery lesion (CAL) formation. Recently, the α2, 6 sialylated IgG was reported to interact with a lectin receptor, specific intracellular adhesion molecule-3 grabbing nonintegrin homolog-related 1 (SIGN-R1) in mice and dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) in human, and to trigger an anti-inflammatory cascade. This study was conducted to investigate whether the polymorphism of DC-SIGN (CD209) promoter −336 A/G (rs4804803) is responsible for susceptibility and CAL formation in KD patients using Custom TaqMan SNP Genotyping Assays. A total of 521 subjects (278 KD patients and 243 controls) were investigated to identify an SNP of rs4804803, and they were studied and showed a significant association between the genotypes and allele frequency of rs4804803 in control subjects and KD patients (P = 0.004 under the dominant model). However, the promoter variant of DC-SIGN gene was not associated with the occurrence of IVIG resistance, CAL formation in KD. The G allele of DC-SIGN promoter −336 (rs4804803) is a risk allele in the development of KD
    corecore